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• time lag: 12 h 10 min
• smoothing: 167

minimizing the potential disruption of the HZ. The positioning in
the sediment upstream (S ) and downstream (S ) besideU D an

in-stream gravel bar should capture different respiration
characteristics within the same morphological unit [1]. The
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placement of
both sensors
was only 40cm
apart and the
measuring
interval was set
to 5 minutes.
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LTC Logger and optode based oxygen logger were installed in the stream and in the
sediment at 45cm depth [2]. Streambed adapted probe rods with a screened section
of 2cm are designed to ensure a highly responsive and localized measurement whilst

The EC time series are split into heavily overlapping
windows a cross-correlation is performed to
identify a transient time shift. For each time-step the
stream EC was individually smoothed to optimize the
correlation between t

. T

[3] where

he stream and the sediment EC
signal [4] he maximal Pearson correlation coefficient
(PCC) indicates the optimal time-shift for each window.
The results vary depending on the chosen window
length, so we used the median travel-time from several
window lengths between 36h and 72h.
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Respiration is an important parameter for characterizing
the ecological functioning of a stream. Hyporheic
community respiration contributes a large fraction to the
whole stream respiration, but is difficult to determine

.
in

situ When the travel-times of the hyporheic water and
the related oxygen concentrations are known, respiration
rates can be derived using simple first order decay. We
present a method that uses variable electrical
conductivities (EC) as tracer to detect the time lag
between the stream EC and the EC signal in the
hyporheic sediment. The travel-times obtained by cross-
correlation are then combined with measurements
of dissolved oxygen (DO) for deriving a transient aerobic
respiration rate. We compared travel-times, oxygen
supply, decay rates, and damköhler numbers in the
sediment upstream and downstream of an in-stream
gravel bar.

in situ

The DO concentrations at S are higher and more

variable than those at S [5].

An exponential relationship was found to explain 61%
by temperature and is

used for normalizing the decay rates to 15°C [8]. T

U

D The distinctive peaks at S

can be attributed to changes in water level induced by an
upstream water mill [6]. Rapidly increasing water levels
of up to 15cm for a duration of about 120min result in
significantly shorter travel-times. This high travel-time
variability could not be resolved by the cross-correlation
alone, so peaks of short travel times were estimated
from the water level peaks [6 7].
The adjusted travel-times for S ranging from 20-320min

(μ=170min), for S from 520-1280min (μ=683min) [7].

of
the variations in the decay rates

he
resulting mean decay rate for S was higher (r=6.2 d )

and more variable ( =2.7 d ) compared to S (r=5.2 d ,

σ=1.4 d ). The relation is clearly following an 1st order
decay [9].
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Changes in the diurnal EC signal are suitable for calculating travel-times and thus
deriving transient respiration rates in the hyporheic zone. The calculation of a
Damköhler number (ratio between rate and transport) revealed a more reaction
limited zone S , caused by water level peaks which are rapidly increasing the

oxygen supply [10]. On S the respiration becomes transport limited where longer

travel times tend limiting the oxygen supply and therewith the respiration rate. We
demonstrate how hydrodynamic effects and morphology can affect the respiration.
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