Deriving variable travel times and aerobic respiration in the hyporheic zone using electrical
conductivity as natural tracer
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Kl Introduction Bl Field measurements

Respiration is an important parameter for characterizing LTC Logger and optode based oxygen logger were installed in the stream and in the
the ecological functioning of a stream. Hyporheic sediment at 45cm depth [2]. Streambed adapted probe rods with a screened section
community respiration contributes a large fraction to the of 2cm are designed to ensure a highly responsive and localized measurement whilst

whole stream respiration, but is difficult to determine in minimizing the potential disruption of the HZ. The positioning in
situ. When the travel-times of the hyporheic water and the sediment upstream (S,) and downstream (S,) beside an
the related oxygen concentrations are known, respiration = in-stream gravel bar should capture different respiration S8
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rates can be derived using simple first order decay. We | characteristics within the same morphological unit[1]. The 1A TH 52103 5205 o 53720
present a method that uses variable electrical “ImAS Elciﬁesrgﬁggg ' < % The EC time series are split into heavily overlapping
covon he Sroam EG.and ho EG.sinal m ey . U |E oy s Tt s S ot oxh oo
hyporheic sediment. The travel-times obtained by cross- - 1620 apart ar.]d the O ‘i Jj stream EC was individually S.moothed to optimize the

lati th . bined with in sit t measuring : A 210 correlation between the stream and the sediment EC
correlation are then combined with in situ measurements L. interval was set o orre 1 the | it
of dissolved oxygen (DO) for deriving a transient aerobic t0 5 minutes ‘ e on signal [4]. The maximal Pearson correlation coefficient
respiration rate. We compared travel-times, oxygen N | ' ol . menngiez | (PCGC) Indicates the optimal time-shift for each window.
supply, decay rates, and damkohler numbers in the e ;’;"';atalogger . 2 oA N T The results vary depending on the chosen window
sediment upstream and downstream of an in-stream 1605 © miniDOT oxygen datalogger Boiof s length, so we used the median travel-time from several
gravel bar. (| Imstream gravel bar witr 20 . window lengths between 36h and 72h.
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Bl Aerobic respiration results H Conclusion

12 The DO concentrations at S, are higher and more | ' | Changes in the diurnal EC signal are suitable for calculating travel-times and thus

DOS, — DOS,

10(- e 5" variable than those at SD [5] The distinctive peakS at SU 0.8 Eizg:;m?]léégrg:k:shifted&filtered deriVinQ transient reSpiratiOn rates in the hypOFheiC zone. The calculation of a

| canbe attributed to changes in water level induced byan | W (I _ Damkohler number (ratio between rate and transport) revealed a more reaction

= w | \ N | | upstream water mill [6]. Rapidly increasing water levels | | limited zone S, caused by water level peaks which are rapidly increasing the
é 6 | - of up to 15¢cm for a duration of about 120min result in ™ ‘ oxygen supply [10]. On S, the respiration becomes transport limited where longer
: W m (j ! w Ww V\ u\ww | ( MMM significantly shorter travel-times. This high travel-time 0-2‘( \ | W k travel times tend limiting the oxygen supply and therewith the respiration rate. We
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“ |/ variability could not be resolved by the cross-correlation . | demonstrate how hydrodynamic effects and morphology can affect the respiration.
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| aIOne, SO peaks Of Short travel tlmes Were eStImated o 1%t order decay (temperature corrected 15°C) Egvili?ncﬁrived Damkohler numbers (temperature corrected 15°C) Eg\gﬁmzﬂved
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I . . . . excuded values (O= oS - 0. O 5 L o
voverime s, The adjusted travel-times for S, ranging from 20-320min e 8 pomiciernurbers| | |°
travel-time S, _ : . _ .

S, (o157 (u=170min), for S, from 520-1280min (u=683min) [7].

decay rate S, (at 15°C)

An exponential relationship was found to explain 61% of
the variations in the decay rates by temperature and is
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Ef | § used for normalizing the decay rates to 15°C [8]. The “ 10"} | los
o %M‘ || )h resulting mean decay rate for S, was higher (r=6.2d") ° AL i | L
af 41" r? M.W& - and more variable (0=2.7 d") compared to S, (r=5.2 d”, ", | | b s
?| | | | W o=1.4 d"). The relation is clearly following an 1st order | | | | | | | ‘ ‘RN | Io'g
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