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4 Hyporheic exchange flow

Nico Trauth, Christian Schmidt, and Jan H. Fleckenstein

Stream discharge events increase the reaction efficiency of the hyporheic zone
of an in-stream gravel bar
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2 Stream flow simulations

5 Reactive efficiency of the hyporheic zone during events

3 Groundwater model and scenarios

Reactive efficiency (RE) = Total solute consumption as a fraction of total solute influx
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RE increases with event
duration and maximum
discharge (

) and
DOC availability
Higher DOC availability
fuels denitrification RE
more strongly than
aerobic respiration RE,
which is close to the
maximum

larger HZ
extent and longer
residence times

Hyporheic exchange flux (HEF) and water age
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Colours indicate time of infiltration according to hydrograph
Deep infiltration during events: Larger extent of the HZ
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Total HEF increases by events (up to times of HEF )

Slope of falling HEF limb changes at neutral conditions ( )
Water age peaks:
a Age minimum: Rising limb creates larger degree of

submergence, a lot of fresh water infiltrates into the domain
b 1st age maximum after Q-peak: Less fresh water infiltrates

and old water from a still exists in the domain
c 2nd age maximum after event: During falling limb hydraulic

head gradients decline and flow velocity decreases leading
to older water ages
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Stream hydrograph for comparison (not to scale)

Hyporheic exchange flux (HEF)

Mean water age of hyporheic exchange flux
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Hyporheic flow patterns during an event
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Stream discharge scenarios
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Transient hydraulic heads at streambed
Ambient groundwater flow field with
constant head boundary conditions
Solute transport of O , DOC, NO

Redox reactions:
- Aerobic respiration
- Denitrification

Particle tracking
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Hydrograph of scenario

Steady state CFD simulations
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Interpolation between steady state
hydraulic heads from CFD model
Transient hydraulic heads derived
for each mesh cell at the streambed

Computational fluid dynamics (CFD)
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For details see
Trauth et al. 2015, WRR
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In the hyporheic zone (HZ) important
biogeochemical reactions of stream and
groundwater solutes occur with crucial impact
on nutrient cycling in fluvial systems.
Prior modelling studies have evaluated the
factors which control hyporheic exchange,
residence times and biogeochemical processes
for mostly conditions.
In this study, we set up a and
reactive transport model to elucidate the impact
of single stream discharge events on water
exchange, solute transport and reactions within
the hyporheic zone of an in-stream gravel bar.
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In-stream gravel bar at the
Selke River in Germany.
Extent: 20 x 7 m
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