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Closing the conceptual gap between the ynj F nemnoLr:

1. INTRODUCTION

Despite numerous modelling studies on hyporheic exchange have advanced our understanding of general

mechanisms, they are often focused on local-scale processes with highly simplified boundary conditions (BC). N
This may lead to a misrepresentation of the hyporheic exchanges and biogeochemical turnover capacity in river 8_
corridors. S
Q
To close this conceptual gap, we aim to provide and integrate field and modelling approaches to quantify 0
exchange fluxes and processes between the hyporheic and stream system across different spatial and temporal §
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2. STUDY SITE I 5. GROUNDWATER MODELLING I
Lowest part of the Upper Emme valley [A=0.9 km?], Emmental, Switzerland Fully coupled surface-subsurface flow and
* Extremely dynamic pre-alpine alluvial catchment reactive transport model: HGS
. : 4.4 m3/s (higher duri It ————
U _an m /s (hig er. uring snowmelt)  Sequentially coupling: transient streambed
¢ Dense continuous monitored measurement network btained f CED delli d
e 8 GW abstraction wells (45% of Bern’s drinking water) pressures obtained from MOogaelling Usead as %'
e 4 SW gauging stations (10 min interval) BC N
*  +30 piezometers (10-15 min interval) * Simulate both exchange flow and biogeochemical E
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. an_ ;540 mé‘d, naiOOéﬁ } Schilling et al., 2017 turnover in the hyporheic sediments s
v= 2.4 m/d, n=0. *  Hydraulic Mixing Cell (HMC) flow tracking tool for &
mixing ratios simulation throughout the entire *g
domain (Partington et al., 2011) o
* Parameter estimation: PEST%
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3. OBJECTIVES I g 523500 574000 624500 625000 W
. o . o . X pumping wells INLET
1. Exploring realistic hydraulic boundary conditions for CFD modelling
2. Using a highly advanced modelling framework to explore the 6. FIELD DATA I
superposition of different spatial and temporal scales for both
synthetic and highly instrumented field based environments (Emme- * High-resolution state-of-the-art LIDAR- . [
catchment) UAV characterization of the streambed |
6750 - —'\\
3. Integrating innovative field observations (tracer and UAV data) in this (pre and post-flood event) gw; . S
modelling process * Novel tracer methods (3’Ar) in addition Eﬁf :c'
to ?22Rn, 3H/?He and atmospheric | S
novel gases for appropriate model | S
4. STREAM FLOW SIMULATIONS l 89> PRIOP S
parametrization 5
COmPUtationaI FIUid DynamiCS (CFD) COde: Op@ﬂVFOAM ° Hydrauhc _and also UAV_ f|e|d data
* Solver: two-phase (air-water) algorithm interFoam based on the volume of fluid
(VOF) method 7 OUTLOOK I
 Transient flow simulation (Trauth et al., 2017) :
* Local hydraulic head distribution at the streambed We expect that simulation results will provide a more realistic representation
Velocities (U) of exchange flows and reactions between the stream channel, hyporheic

zone and the underlying aquifer than by using steady hydraulic boundaries.
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