# Nutrient export dynamics at catchment scale – a Germany-wide analysis of dominant controls

Pia Ebeling, Jan H. Fleckenstein, Andreas Musolff Helmholtz Centre for Environmental Research – UFZ, Department of Hydrogeology, Leipzig, Germany

# Motivation

Nutrient inputs from human activities have increased the pressure on aquatic ecosystems. Spatio-temporal variability of solute concentrations in streams determine water quality and are closely linked to ecosystem health. Catchments are complex units, which integrate multiple processes driving hydrological and solute dynamics. Understanding drivers of that integration can improve the assessment of strategies to manage stream water quality. Here, we analyse nutrient export dynamics of catchments using a data-driven top-down-approach.

### **Objectives:**

- Classify German catchments according to their nutrient export dynamics
- Identify patterns, drivers and processes at catchment scale

## Methods

- 1386 nested catchments covering an area of about 80% of Germany
- Nutrient concentrations  $(NO_3^-, PO_4^{3-})$  from regular national monitoring on a biweekly to bimonthly basis
- 441 related discharge stations exist
- Samples since 2000 used to analyse current patterns

### **Export metrics:**

 slope b from power-law concentration-discharge (C-Q) relations ratio of variation

**Catchment characteristics:** 

 topography, hydrology, geology and land use

coefficients  $CV_C/CV_O$ 





Concentration-discharge (C-Q) relation for one station





# Results



#### **NO3** slope b of C-Q-relations with size according to mean NO3 concentration



Musolff, A., et al. (2015). "Catchment controls on solute export." Advances in Water Resources **References:** 86: 133-146.



**PO4** slope b of C-Q-relations with size according to mean PO4



# Outlook

- shifts

# **Contact:**

Pia Ebeling pia.ebeling@ufz.de

 NO3: chemostasis and mobilization C-Q pattern prevail PO4: chemodynamic with dilution and constant pattern

| <ul> <li>NO3</li> <li>PO4</li> </ul>           | fraction of agriculture in catchment<br>0.0 0.2 0.4 0.6 0.8                                           |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| dilution co                                    | nstant,<br>odynamic chemostatic mobilization dilution chemodynamic<br>n=228 n=177 n=8 n=19            |
| per solute Agriculture fraction in NO3 classes |                                                                                                       |
| alum                                           | nent characteristics (FLSK).                                                                          |
| R <sup>2</sup>                                 | Significant predictors<br>(direction of influence)                                                    |
| 0.58                                           | forest (-), agriculture (+), sediment(-), $CV_Q$ (+), specific Q (-)                                  |
| 0.63                                           | TWI (+), elevation & slope (-),<br>sediment (+), drainage density (-),<br>agriculture (+), forest (-) |
| 0.58                                           | sediment (+), TWI (+), BFI (+),<br>CV <sub>Q</sub> (-), drainage density (-)                          |
| 0.46                                           | sediment (-), population density (+),<br>P from WTP (+), artificial surfaces (+)                      |
| 0.56                                           | N surplus (+), sediment (+), TWI <sub>90P</sub><br>(+), median TWI (-), Q season. (+)                 |
| 0.30                                           | Q flashiness (+), CV <sub>Q</sub> (-), BFI (+),<br>sediment (+), Q seasonality (+)                    |
|                                                |                                                                                                       |

• Expand dataset with modelled Q to increase number of catchments with C-Q relations

Extend catchment characteristics

Classification of nutrient limitations and their temporal

HELMHOLTZ **CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ**