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4 Conclusions

Nitrate export regimesNitrogen budget and effective travel times

• Excessive agricultural nitrogen (N)-
input causes exceeding drinking 
water limits in groundwater and 
eutrophication in surface waters

• Nitrate- and Water Framework 
Directive partly miss their targets

• Reduced N-inputs do not result in a 
immediate decrease of riverine 
concentrations

• Legacy problem: Time lags in soil- 
and groundwater and accumulation 
of N in soils can mask measures

• Need to improve river management 
and assessment of measures by 
quantifying and understanding 
legacy effects

• Midstream station: 75% (28.42 
kg N/(ha a)) of diffuse N inputs 
are retained in the catchment

• Downstream station: 88% (58.82 
kg N/(ha a)) of N retained

• Significant removal by 
denitrification is not likely (oxic 
aquifers) → N still in the 
catchment storage (legacy)

midstream downstream

• Lognormal travel time distributions 
of N with modes from 7 to 22 years

• Systematically younger nitrogen is 
exported in the high flow seasons 
winter and spring while summer 
and autumn travel times are older

• Convolution of N-input with travel 
times explains 29-40 % of missing 
N (hydrological legacy)

• All sub-catchments evolve to a 
chemostatic export regime

• Under conditions of changing 
input, the export regime is more 
chemodynamic

• Phases of increasing inputs lead 
to enrichment patterns (younger 
water ages with higher C)

• Phases with decreasing inputs 
can lead to dilution pattern 
(older water ages still high in C)

• Nitrate chemostasis only under 
stable N-inputs

• N accumulation in soil would 
dampen C-Q changes

• Catchments may store but not 
remove a large legacy of N

• Travel times of N through the 
catchment can be long - 
changing agricultural inputs will 
need time to change low flow 
and high flow concentrations

• Chemostasis of nitrate exports 
may be not an endpoint of 
intensive agriculture but rather a 
reflection of a constant N-input

• Water quality management 
should address both, longer-term 
reduction of N-inputs and shorter 
term enhancement of removal

Objectives Data basis and methods

• Quantify the retention of N and 
discuss removal vs. legacy effects

• Characterize the travel time of N 
between fertilizer application and 
riverine exports

• Characterize the tracjectories of 
concentration-discharge 
relationships and discuss linkages 
to the N-legacy

• Utilize a long-term observational 
dataset of N-input and -exports in a 
well studied mesoscale catchment

• Holtemme catchment (270 km²) in 
Central Germany

• Three nested stations from pristine 
mountainious headwaters to lowland 
intensive agriculture

• Water quantity and quality observations 
from 1970-2016

• Input: Annual agricultural N-
surplus and atmospheric 
depositions, biological 
fixation,wastewater 
contributions

• Output: Seasonal to annual 
nitrate concentrations using 
WRTDS, Hirsch et al. (2010)

• Lognormal effective travel 
time distributions as transfer 
functions between annual 
diffuse N-inputs and 
seasonal/ annual riverine 
nitrate exports

• Annual C-Q relationships 
based on the daily WRTDS 

upstream

midstream
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81% 
agriculture

27% 
agriculture
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