Taming the Intractable

how to control the cormorant and other unmanageable wildlife

Sten Zeibig

supervisors: PD Dr. K. Frank, Prof. H. Malchow

UFZ PhD Conference Leipzig, April 2008

イロト イヨト イヨト イヨト

Sten Zeibig

Taming the intractable

UFZ Leipzig / Uni Osnabrück

Principle insight

Outline

Background story

From the special to generity

Principle insights

Lessons learnt

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

Background story: the conflict

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

э

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Background story o●ooo	From the special to generity		Appendix 0000

The conflict

- Fishery suffers losses by cormorants
- Cormorant is a protected species

・ロト・西ト・西ト・西・シック

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

The conflict

Numbers of cormorants is increasing

T. Bregnballe et al.

・ ロ ト ・ 日 ト ・ 田 ト ・

· 《 클 ▶ 《 클 ▶ · 클 · · ⑦ � (UFZ Leipzig / Uni Os<u>nabrück</u>

Sten Zeibig

Background story 000●0	From the special to generity		Appendix 0000
The conflic	t		

Standard approach for reduction is to cull, but culling is dodgy

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Lessons learnt oo Appendix

The buffer structure

Breeding cormorant

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へぐ

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

<mark>_essons learnt</mark> ⊃⊙ Appendix

The buffer structure

Some mature cormorants do not breed (floaters)

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

The buffer structure

Floaters can fill vacancies in breeding sites

・ロ・・ 日・・ 田・・ 田・・ 日・ うらぐ

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

The buffer structure

Floaters can fill vacancies in breeding sites

Ecosystem functioning influences regulation effectiveness

4 日 > 4 回 > 4 □ >

Sten Zeibig

From the special to generity the relevance of buffer structure

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

Lessons learnt

Appendix 0000

A common structure

Floaters are known from many species

Spanish imperial eagle

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Sten Zeibig

Lessons learnt

Appendix

A common structure

Floaters are known from many species

Otter

◆□▶◆□▶◆≧▶◆≧▶ ≧ めへの

Sten Zeibig

Lessons learnt

Appendix 0000

A common structure

Floaters are known from many species

Some lizard species

・ロ・・聞・・思・・思・ のへぐ

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Lessons learnt

Appendix

A common structure

Floaters are known from many species

Badger

Sten Zeibig

Lessons learnt

Appendix

A common structure

Floaters are known from many species

Raven

・ロト・西・・ヨト・ヨー りへの

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Lessons learnt

Appendix

A common structure

Floaters are known from many species

Mink

▲□▶▲□▶▲□▶▲□▶ □ めのの

Sten Zeibig

Lessons learnt

Appendix

A common structure

Floaters are known from many species

Canada goose

Sten Zeibig

Why not try to get a general understanding of the buffer structure?

Of special interest: the context of regulation

- conserving viability
- being effective
- being efficient

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

э.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

- Why not try to get a general understanding of the buffer structure?
- Of special interest: the context of regulation
 - conserving viability
 - being effective
 - being efficient

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

э.

イロト イヨト イヨト イヨト

- Why not try to get a general understanding of the buffer structure?
- Of special interest: the context of regulation
 - conserving viability
 - being effective
 - being efficient

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

э

イロト イヨト イヨト イヨト

- Why not try to get a general understanding of the buffer structure?
- Of special interest: the context of regulation
 - conserving viability
 - being effective
 - being efficient

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

3

イロト イヨト イヨト イヨト

- Why not try to get a general understanding of the buffer structure?
- Of special interest: the context of regulation
 - conserving viability
 - being effective
 - being efficient

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

イロト イヨト イヨト イヨト

What are the dynamical effects of the buffer structure?

- Given a buffer stock is to be regulated, how could this be done in an effective and efficient way?
 - Are there any principle limitations or pitfalls?
 - Are there rules of thumb?
- How can the cormorant be regulated?

Sten Zeibig

- What are the dynamical effects of the buffer structure?
- Given a buffer stock is to be regulated, how could this be done in an effective and efficient way?
 - Are there any principle limitations or pitfalls?
 - Are there rules of thumb?
- How can the cormorant be regulated?

- What are the dynamical effects of the buffer structure?
- Given a buffer stock is to be regulated, how could this be done in an effective and efficient way?
 - Are there any principle limitations or pitfalls?
 - Are there rules of thumb?
- How can the cormorant be regulated?

Sten Zeibig

- What are the dynamical effects of the buffer structure?
- Given a buffer stock is to be regulated, how could this be done in an effective and efficient way?
 - Are there any principle limitations or pitfalls?
 - Are there rules of thumb?
- How can the cormorant be regulated?

Sten Zeibig

- What are the dynamical effects of the buffer structure?
- Given a buffer stock is to be regulated, how could this be done in an effective and efficient way?
 - Are there any principle limitations or pitfalls?
 - Are there rules of thumb?
- How can the cormorant be regulated?

Sten Zeibig

Principle insight

Lessons learnt

Appendix 0000

A model of the buffer structure

・ロマ・西マ・山マ・白マ

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Principle insight

Lessons learn

Appendix 0000

A model of the buffer structure

・ロト・日本・日本・日本・日本・今日で

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Principle insight

Lessons learnt

Appendix 0000

A model of the buffer structure

・ロト・日本・日本・日本・日本・今日で

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Principle insight

Lessons learn

Appendix 0000

A model of the buffer structure

・ロ・・聞・・叫・ しょうくの

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Principle insight

Lessons learn

Appendix 0000

Stock regulation

time

	<国><国><国><国><国><国><
Sten Zeibig	UFZ Leipzig / Uni Osnabrück
Taming the intractable	

From the special to generity

Principle insight

Lessons learn

Appendix 0000

Stock regulation

time

	◆□▶ ◆圖▶ ◆필▶ ◆필▶ ─ 国 ─ のへぐ
Sten Zeibig	UFZ Leipzig / Uni Osnabrück
Taming the intractable	

From the special to generity

Principle insight

Lessons learnt

< E

Appendix 0000

Stock regulation

time

	arb	10
ын	 	
0.01	0.10	. 9

From the special to generity

Principle insight

Lessons learn

ヘロト ヘヨト ヘヨト ヘヨ

Appendix 0000

Stock regulation

Sten Zeibig
Background story

From the special to generity

Principle insight

Lessons learn

ヘロト ヘヨト ヘヨト ヘヨ

Appendix

Stock regulation

Sten Zeibig

Ways to regulate a stock

Culling of adults

- Egg oiling, chicks suffocate before hatching
- Reducing environmental capacity for breeders

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▼ ○ ◇ ◇

Sten Zeibig

Ways to regulate a stock

- Culling of adults
- Egg oiling, chicks suffocate before hatching
- Reducing environmental capacity for breeders

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

イロト イヨト イヨト イヨト

Ways to regulate a stock

- Culling of adults
- Egg oiling, chicks suffocate before hatching
- Reducing environmental capacity for breeders

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

イロト イヨト イヨト イヨト

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

æ

イロト イヨト イヨト イヨト

Question reminder

- What are the dynamical properties of the buffer structure?
- Given a buffer stock is to be regulated, how could this be done in an effective and efficient way?
 - Are there any principle limitations or pitfalls?
 - Are there rules of thumb?
- How can the cormorant be regulated?

Sten Zeibig

Result: buffer structure and resilience

The bigger the buffer, the faster breeders recover from catastrophes

LIEZ Loipzia / Upi Ospabrijsk

Sten Zeibig

Result: buffer structure and resilience

The bigger the buffer, the faster breeders recover from catastrophes

 \Rightarrow The buffer structure is a resilience mechanism.

LIEZ Loipzig / Lipi Oppobrück

Sten Zeibig

Question reminder

- What are the dynamical properties of the buffer structure?
- Given a buffer stock is to be regulated, how could this be done in an effective and efficient way?
 - Are there any principle limitations or pitfalls?
 - Are there rules of thumb?
- How can the cormorant be regulated?

Sten Zeibig

Lessons learnt

Appendix

Result: culling and buffer destruction

Slightly increased culling destroys the buffer

UFZ Leipzig / Uni Osnabrück

Image: A matrix

Sten Zeibig

Result: culling and buffer destruction

Slightly increased culling destroys the buffer

⇒ Loss of resilience!

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Result: buffer types and achievable targets

Sluggishness of buffer response to breeders loss determines achievable regulation targets

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Result: buffer types and achievable targets

Sluggishness of buffer response to breeders loss determines achievable regulation targets

\Rightarrow Margin for normative decisions is limited.

Sten Zeibig

Lessons learnt

Appendix

Result: working regulation strategies Reducing environmental capacity for breeders

Broad range of target sizes ecologically possible

- Buffer structure is conserved
- Low fluctuations in stock size, i.e. regulation effort well predictable

Sten Zeibig

Lessons learnt

Appendix

Result: working regulation strategies Reducing environmental capacity for breeders

Broad range of target sizes ecologically possible

- Buffer structure is conserved
- Low fluctuations in stock size, i.e. regulation effort well predictable

Sten Zeibig

Lessons learnt

Appendix

Result: working regulation strategies Reducing environmental capacity for breeders

Broad range of target sizes ecologically possible

- Buffer structure is conserved
- Low fluctuations in stock size, i.e. regulation effort well predictable

Result: working regulation strategies

Reducing environmental capacity for breeders

- Broad range of target sizes ecologically possible
- Buffer structure is conserved
- Low fluctuations in stock size, i.e. regulation effort well predictable

Sten Zeibig

Lessons learnt

Sten Zeibig

UFZ Leipzig / Uni Osnabrück

æ

<ロ> <同> <同> < 同> < 同>

Buffer structure provides a resilience mechanism

- Regulation should not alter system structure to maintain resilience
- There are limitations for achievability of normative settings
- Understanding ecosystem functioning as basis for design of conflict reconciliation strategies
- Thus, need for structurally explicit dynamic models

Sten Zeibig

- Buffer structure provides a resilience mechanism
- Regulation should not alter system structure to maintain resilience
- There are limitations for achievability of normative settings
- Understanding ecosystem functioning as basis for design of conflict reconciliation strategies
- Thus, need for structurally explicit dynamic models

Sten Zeibig

- Buffer structure provides a resilience mechanism
- Regulation should not alter system structure to maintain resilience
- There are limitations for achievability of normative settings
- Understanding ecosystem functioning as basis for design of conflict reconciliation strategies
- Thus, need for structurally explicit dynamic models

ヘロト ヘヨト ヘヨト ヘヨ

Sten Zeibig

- Buffer structure provides a resilience mechanism
- Regulation should not alter system structure to maintain resilience
- There are limitations for achievability of normative settings
- Understanding ecosystem functioning as basis for design of conflict reconciliation strategies
- Thus, need for structurally explicit dynamic models

Sten Zeibig

- Buffer structure provides a resilience mechanism
- Regulation should not alter system structure to maintain resilience
- There are limitations for achievability of normative settings
- Understanding ecosystem functioning as basis for design of conflict reconciliation strategies
- Thus, need for structurally explicit dynamic models

Thank you for your attention!

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Conceptional model

Logistic growth dynamic of the reproductive part

$$N_{t+1} = N_t + r_t N_t \left(1 - \frac{N_t}{\kappa}\right)$$

Simple cut-off dynamic of the buffer

$$P_{t+1} = \min\{\kappa, P_t - \delta P_t\}$$

Sten Zeibig

Taming the intractable

UFZ Leipzig / Uni Osnabrück

・ロト ・回ト ・ヨト ・ヨト

Conceptional model

Flux into the buffer

$$f_{rb}(N_t) = \lambda max\{0, (1+r_t)N_t - K\}$$

Flux forth the buffer

$$f_{br}(N_t, P_t) = \beta(P_t - \delta P_t) \frac{\max\{0, (K - N_t)\}^2}{k^2 + (K - N_t)^2}$$

Sten Zeibig

Taming the intractable

UFZ Leipzig / Uni Osnabrück

э

・ロト ・回ト ・ヨト ・ヨト

Conceptional model

First calculation of gross growth

$$N_{g,t} = r_t N_t - f_{rb}(N_t) + f_{br}(N_t, P_t)$$
 $N_{t+1} = N_t + N_{g,t} \left(1 - rac{N_t}{K}
ight)$

Buffer dynamic

$$P_{t+1} = \min\{\kappa, P_t - \delta P_t + f_{rb}(N_t) - f_{br}(N_t, P_t)\}$$

UFZ Leipzig / Uni Osnabrück

・ロト ・回ト ・ヨト ・ヨト

Sten Zeibig

Regulation strategies

"bang-bang"-strategy with "stop-loss-rule"

ヘロト ヘヨト ヘヨト

Sten Zeibig

Principle insight

Lessons learnt

Appendix

Regulation strategies: achievable targets, costs, risk

Sten Zeibig

Principle insight

Lessons learnt

Appendix

Regulation strategies: achievable targets, costs, risk

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

Principle insight

Lessons learnt

Appendix

Regulation strategies: achievable targets, costs, risk

Sten Zeibig

Principle insight

Lessons learnt

Appendix

Regulation strategies: achievable targets, costs, risk

くりつ 川 スポッスポッスピッス

UFZ Leipzig / Uni Osnabrück

Sten Zeibig

1. If risk of catastrophes is unknown, conserve the buffer

- 2. If possible, reduce environmental capacity for breeders
- 3. If not, breeders number may be reduced carefully
- 4. Medium reductions of breeders number lead to strong fluctuations and thus are risky
- 5. Stronger breeders reduction removes the buffer
- 6. Manipulating the buffer directly or the reproduction rate is not effective

- 1. If risk of catastrophes is unknown, conserve the buffer
- 2. If possible, reduce environmental capacity for breeders
- 3. If not, breeders number may be reduced carefully
- 4. Medium reductions of breeders number lead to strong fluctuations and thus are risky
- 5. Stronger breeders reduction removes the buffer
- 6. Manipulating the buffer directly or the reproduction rate is not effective

- 1. If risk of catastrophes is unknown, conserve the buffer
- 2. If possible, reduce environmental capacity for breeders
- 3. If not, breeders number may be reduced carefully
- 4. Medium reductions of breeders number lead to strong fluctuations and thus are risky
- 5. Stronger breeders reduction removes the buffer
- 6. Manipulating the buffer directly or the reproduction rate is not effective

- 1. If risk of catastrophes is unknown, conserve the buffer
- 2. If possible, reduce environmental capacity for breeders
- 3. If not, breeders number may be reduced carefully
- 4. Medium reductions of breeders number lead to strong fluctuations and thus are risky
- 5. Stronger breeders reduction removes the buffer
- 6. Manipulating the buffer directly or the reproduction rate is not effective

イロト イヨト イヨト イヨト
< ロ > < 同 > < 回 > < 回 >

Rules of thumb for regulation

- 1. If risk of catastrophes is unknown, conserve the buffer
- 2. If possible, reduce environmental capacity for breeders
- 3. If not, breeders number may be reduced carefully
- 4. Medium reductions of breeders number lead to strong fluctuations and thus are risky
- 5. Stronger breeders reduction removes the buffer
- 6. Manipulating the buffer directly or the reproduction rate is not effective

Rules of thumb for regulation

- 1. If risk of catastrophes is unknown, conserve the buffer
- 2. If possible, reduce environmental capacity for breeders
- 3. If not, breeders number may be reduced carefully
- 4. Medium reductions of breeders number lead to strong fluctuations and thus are risky
- 5. Stronger breeders reduction removes the buffer
- 6. Manipulating the buffer directly or the reproduction rate is not effective

Sten Zeibig

Taming the intractable