Extracting Signals from Satellite retrieved Land Surface Temperature for the Calibration of a Hydrological Model Matthias Zink, Luis Samaniego, Juliane Mai, and Matthias Cuntz

1. Motivation

Hydrological models are usually calibrated against discharge measurements, and thus are only trained on information of a few points within a catchment. This procedure does not take into account any spatio-temporal variability of fluxes or state variables. Satellite data may help to account for this spatial variability. The objective of this study is to calibrate a hydrological model with satellite derived land surface temperature T_s . These data have the advantage to be broadly available even in regions where discharge measurements are barely on hand.

2. Methodology Mesoscale Hydrologic Model (mHM)

To incorporate satellite data into the hydrological model mHM [1] an additional module has been developed to estimate $\Gamma_{\rm s}$ using the energy balance. By closing the water balance with mHM the evapotranspiration is estimated by

$$ET$$

$$R_n$$

$$r_a$$

$$r_s$$

$$\mathbf{ET} = P - Q - \Delta S$$
 .

Land Surface Temperature Model

 $\Gamma_{\rm s}$ was derived using mHM's **ET** estimation for solving the energy balance and the sensible heat equation. Assuming that the soil heat flux is negligible at the daily time scale, we get:

$$H = R_n - \lambda \cdot \mathbf{ET}$$
$$H = \rho \cdot c_p \cdot \frac{\widehat{T_s} - T_a}{r_a}$$

$$\widehat{T_s} = r_a \cdot \frac{R_n - \lambda \cdot \mathbf{ET}}{\rho \cdot c_p} + T_a$$

Γ	•••	evapotranspiration	$[mm \ d^{-}]$
	•••	sensible heat flux	$[W \ m^{-2}]$
		precipitation	$[mm \ d^{-}]$
		observed discharge	$[mm \ d^-$
		simulated discharge	$[mm \ d^-$
		aerodynamic resistance	$[s \ m^{-1}]$
		net radiation	$[W \ m^{-2}]$
		air temperature	[K]
		satellite land surface temperature	[K]
		simulated T_s	[K]
5		change in soil moisture	$[mm \ d^-$
		latent heat of vaporization	$[kJ \ kg^{-}]$

Optimization Objectives

Q	:	$ E_1 + E_2 $
T_{S}	:	$ E_3 + E_4 $
Q & .		$\frac{2}{3}$ Q + $\frac{1}{3}$ T _s

Pattern Similarity (PS)

- albedo, emissivity
- precipitation
- geological data

The evapotranspiration estimation which has been derived by the calibration against discharge and land surface temperature (Q & T_s) has lower spatial variabilities compared to calibrations against only discharge (**Q**). This behavior is observed especially during summer.

