H23C-0981: Multiscale Parameter Regionalization of a Grid-based Hydrologic Model

1. Abstract

The main goal of this study is to validate a multiscale regionalization technique (MPR) integrated into a grid-based mesoscale hydrologic model (mHM). This model should be able to reproduce not only the discharge hydrograph at any gauged or ungauged location but also the spatio-temporal distribution of state variables such as soil moisture. mHM is based on accepted hydrological conceptualizations and require three levels of spatial information: level-2 for the climatic information, level-1 for the state variables of the model, and level-0 for physiographic input data such as soil textures, land cover, elevation, and geological formations. Model parameters at level-1 are location and time dependent. They are estimated through upscaling operators that link level-0 information with global transfer-function parameters, which in turn are found through optimization. mHM results were compared against that obtained with the HBV model whose parameters were regionalized based on the Homogeneous Response Units (HRU) approach.

2. Spatial Resolution

- Level-2: (1000-10 000) m – Meteorologic forcings
- Level-1: (500-5000) m
- Dominant hydrologic processes
- Level-0: (50-100) m
- DEM, land cover, soils, geology
- -SVAT processes

3. Mesoscale Hydrologic Model (mHM)

State variable at cell i, time twhere

- f, g system and output functional relationships *l*-dimensional (measurable) output vector
- fields (grids) representing land cover states, physiographical and meteorological variables
- x state variables
- unmeasurable stochastic inputs
- system's uncertainty due to measurements defects

- State equations: cell i,
- $\dot{\mathbf{x}}_i(t) = \mathbf{f}(\mathbf{x}_i, \mathbf{u}_i, \boldsymbol{\beta}_i) + \boldsymbol{\eta}_i(t)$

Output: Runoff:

$$\mathbf{q}_l(t) = \mathbf{g}(\mathbf{x}, \mathbf{u}, \boldsymbol{\beta})$$

Upscaling Operator[3]:

$$\beta_{ki}(t) = O_k \Big\langle \boldsymbol{u}_j(t), \boldsymbol{\gamma} \Big\rangle$$

$oldsymbol{eta}$	location specific parameters	
γ	s-dimensional global transfer function	
	(to be calibrated).	
$O_k \langle \bullet \rangle_i$	upscaling operator	
Ω	control volume (e.g. river basin)	
t, k	time and parameter indexes	
i	cell location index at level-1	

Luis Samaniego, Rohini Kumar, and Sabine Attinger

Helmholtz - Centre for Environmental Research - UFZ, Germany (luis.samaniego@ufz.de)

5. Example **Upscaling van Genuchten saturated volumetric** water content θ_s

Level-2	Variable	Function
	Saturated	$ heta_{si}(t) = \mathcal{H}\langle \ heta_{sj}(t) \ angle_i$ =
	volumetric water	
1	content, cell i	
Level-1		
	Saturated	$\theta_{sj}(t) = \begin{cases} \gamma_1 + \gamma_2 u_{1j} \\ \gamma_1 + \gamma_2 u_{1j} \end{cases}$
→ Level-0	volumetric water	$\left(\gamma_4 + \gamma_5 u_{1j}\right)$
	content cell i	
	Soil bulk density,	$\rho_i(t) = \frac{1}{\rho_i(t) - 1 - \rho_i(t)}$
	cell j	$\frac{-j(e)}{\varrho_0} + \frac{-j(e)}{u_{3j}}$
]	$\int \gamma_7 u_{4j}(t) \equiv$
	Fraction organic	$o_i(t) = \begin{cases} \gamma_8 & u_{Ai}(t) \end{cases}$
	matter, cell j	$ \begin{array}{c} \begin{array}{c} & J \\ \\ \end{array} \end{array} \right) \\ \begin{array}{c} & \gamma \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \gamma \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
time t:		$(19 a_{4j}(v) -$
	where	
$(t) \forall i \in \Omega$	j cell index at level-0 n number of cells i contained in	cell i γ_1,\ldots,γ_9 pe
	<i>o</i> Fraction of organic matter	u_1 M
	ϱ_o Average organic matter bulk d τ_o Sand fraction threshold accord	lensity (= 0.224 g/cm ³) u_3 M ling to [4] (= 66.5%) u_4 La
$+ oldsymbol{\epsilon}_l(t)$		

References

- [1] NASA, http://modis-land.gsfc.nasa.gov/.
- [2] W. J. Rawls, "Estimating soil bulk densiry from particle size analysis and organic matter content," Soil Sci., vol. 135, pp. 123–125, 1983.
- [3] L. Samaniego, R. Kumar, and S. Attinger, "Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale," Water Resources Research, 2008, submitted.
- [4] S. Zacharias and G. Wessolek, "Excluding Organic Matter Content from Pedotransfer Predictors of Soil Water Retention," Soil Sci Soc Am J, vol. 71, no. 1, pp. 43–50, 2007.
- [5] J. Zhu and B. P. Mohanty, "Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study," Vadose Zone J, vol. 1, no. 2, pp. 261–272, 2002.

tion parameters

 $\forall j \in i \rangle$

edo-transfer parameters (calibration) lean fraction of clay at level-0.

lean fraction of sand at level-0.

ineral bulk density based on clay and sand contents [2] and cover.

8. Conclusions

- mising its efficiency:
- -mHM: 64 transfer function parameters (DOF)
- -HBV: 28 HRUs \times 15 parameters per HRU = 420 DOF.

• MPR approach produced a significant improvement in model performance: NSE (mHM) \approx 0.85 to 0.90 whereas NSE (HBV) \approx 0.79 to 0.84.

• MPR led to more plausible spatio-temporal patterns of soil moisture than that obtained with the HRU approach. Validation with MODIS[1] LST.

• MPR induced a substantial reduction of model complexity without compro-

