Streamflow prediction in ungauged catchments using a copula-based similarity measure

1. Introduction

In this study we propose a method to estimate daily streamflow time series in an ungauged basin using a process-based distributed hydrologic model (HBV-UFZ) and sets of model parameters obtained from donor basins. Suitable donor basins are those whose distance to the ungauged catchment in a m-dimension embedding space of catchment predictors is the least. The embedding space is found as a linear or nonlinear transformation of the n-dimension space (n > m) of the catchment descriptors.

2. Research questions

- 1. How to find an appropriate similarity measure suitable for finding basins with an homogeneous hydrologic response?
- 2. How to use this similarity measure to estimate daily streamflow in an ungauged basin?

3. Traditional catchment characterization

Donor basins –	$ ightarrow \mathcal{D} = \{(\mathbf{x}_i, \mathbf{z})\}$	$y_i)$ i =	$= 1, \ldots n \}$
	$\mathcal{Q}_i = \{q_i^t$	t = 1,	$\ldots T$
Ungauged basin —	$ ightarrow \mathcal{D}_u = \{\mathbf{x}_j \mid $	$j \neq i$	$\forall l \}$

Similarity measure \longrightarrow Small Euclidian distance in x

- Similarity measure selected *a priori*, e.g. Euclidian distance.
- Employ unsupervised approaches that are highly uncertain.
- Characterization is not unique.
- \Rightarrow Lack of transferability.

4. Notation

i,j	Indexes for basins.	q_i^t
t	Time index.	F(ullet)
k	Index for a realization.	\mathbf{M}_{j}^{t}
X	m-dimensional vector of inputs.	$\mathbf{U}_{j}^{\check{t}}$
u	n-dimensional vector of inputs	$\mathbf{G}_{j}^{^{*}}$
	in the embedding space.	\hat{eta}_{ik}
n	The sample size of the data set	
	$\mathcal{D}.$	x_1
B	Embedding transformation	x_2
	(possibly nonlinear).	x_3
λ_{ij}	Similarity measure based on a	x_4
	density copula $c(\cdot)$.	x_5
y	Validation runoff characteristic	x_6
	(e.g. \hat{q}).	x_7
\mathcal{T},\mathcal{D}	Training sets.	x_8
${\cal V}$	Validation set.	x_9
N	Number of pairs separated with	
	a distance less than $D(N)$.	p

Discharge for basin i at day t. Hydrologic model HBV-UFZ. Meteorologic inputs. Land cover inputs. Morphologic inputs. k-realization of the parameters from donor catchment *i*. $[m^2]$ Area Trimmed mean slope $P_{15} - P_{85}$ Fraction of north facing slopes $h_{max} - h_{min}$ (elevation) Fraction of karstic formation [mm] Mean Maximum water capacity [1] Mean share of impervious areas [mm] 30y-mean annual precipitation [K] 30y-mean annual temperature January Moment threshold

Luis Samaniego and Rohini Kumar

Helmholtz - Centre for Environmental Research - UFZ, Germany (luis.samaniego@ufz.de)

5. Copula based technique

- **Training** $\longrightarrow \mathcal{T} = \{\mathbf{x}_i, [\lambda_{ij}], y_i \quad \forall i, j \in n\}$ $\mathcal{Q}_i = \{ q_i^t \mid t = 1, \dots T \}$ Embedding $\longrightarrow \mathbf{u} = B[\mathbf{x}]$ Similarity Measure \longrightarrow Small $d(\mathbf{u}_i)$ Metric $\longrightarrow d_{ij}^2 = (\mathbf{u}_i - \mathbf{u}_i)$ **Crossvalidation** $\longrightarrow \mathcal{V} = \{(\mathbf{x}, y | \mathbf{x}, y | \mathbf{x}, y | \mathbf{x}, y | \mathbf{x}, y \}$ **Streamflow Prediction** $\longrightarrow q_j^t = \frac{1}{N} \sum_{k \in \mathbb{N}}$ $\hat{q}_{jik}^t = F(\mathbf{N}$
- The streamflow prediction for an ungauged basin is the ensemble mean of the streamflows generated by the hydrological model $F(\bullet)$ using parameters obtained from its k-nearest neighboring donor basins. \Rightarrow Suitable for transferability

$$egin{aligned} &\mathcal{J}_{ij} \to \mathsf{Small} \ \lambda_{ij} \ -\mathbf{u}_{j}) \mathbf{g} (\mathbf{u}_{i} - \mathbf{u}_{j})^{\mathrm{T}} \ -\mathbf{u}_{j}) \mathbf{g} (\mathbf{u}_{i} - \mathbf{u}_{j})^{\mathrm{T}} \ \mathcal{J}_{j}) \} \ &\sum_{\mathbf{u}, \mathbf{u}_{i}) < D(N)} y_{i} \ &\sum_{\mathbf{u}, \mathbf{u}_{i}) < D(N)} \hat{y}_{i} \ &\sum_{\mathbf{v}, \mathbf{v}_{j} \ d_{B}(\mathbf{u}, \mathbf{u}_{i}) < D(N)} \hat{q}_{jik}^{t} \ &\mathbf{v}_{j}^{t}, \mathbf{G}_{j}, \mathbf{U}_{j}^{t}, \hat{eta}_{ik}) \end{aligned}$$

Basin 1	(i, j)Basin 36	Density copula c(i,j)	Sim. Measure λ_{ij}
Basin 1	Basin 21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JT.T
Basin 1	Basin 42	0^{0}_{0} 0^{1}_{0} 0^{2}_{2} 0^{3}_{3} 0^{4}_{0} 0^{5}_{5} 0^{6}_{6} 0^{7}_{0} 0^{8}_{0} 0^{9}_{1} 10^{10}_{10}	47.1 22.4
Similarity	Moments $\longrightarrow L_{ij}$ U_{ij} Measure $\longrightarrow \lambda_{ij}$	$= \int \int_{\Omega_1} c(v_i, v_j) d\Omega$ $= \int \int_{\Omega_2} c(v_i, v_j) d\Omega$ $= \frac{ U_{ij} - L_{ij} }{U_{ij} + L_{ij}} + (p - L)$	(ij)

7. Local variance minimization

Define a variance function [1]:

Find a transformation and a metric

so that

8. Results

Crossvalidation results for basin 7, using k=3 Nearest Neighbors (NN) and R = 50 ensemble predictions using parameters sets from donor k-NN catchments.

9. Conclusions

The crossvalidation results of the study indicate that: • The Euclidian distance is not appropriate to find NN in the space of the

- catchment descriptors.

References

technique: Applications in hydrology," Water Resour. Res., vol. 41, 2005.

• The copula based method reduced considerably the confidence intervals, BIAS and RMSE of the predictions. NSE and r were, in turn, increased.

[1] A. Bárdossy, G. S. Pegram, and L. Samaniego, "Modeling data relationships with a local variance reducing HELMHOLTZ **CENTRE FOR ENVIRONMENTAL**

RESEARCH – UFZ