1. Introduction

Regional climate modeling and integrated water resources management require, among other things, of a robust, distributed, and parsimonious hydrologic model able to estimate the magnitude of the hydrologic consequences of the land cover and climatic changes on a mesoscale river. This model should also provide reasonable estimates of a number of state variables required for other related processes. Soil moisture is one of these state variables. Current state-of-the-art in estimating and validating soil moisture is not quite satisfactory though. This study presents a comparison of two regionalization approaches that may help improving the estimation of daily estimates made with the distributed hydrologic model HBV-UFZ. Plausibility tests were carried out with a proxy obtained from MODIS images.

2. Facts and research questions

The spatial-temporal distribution of the soil moisture plays a crucial role on:

- Lateral flows and streamflow generation
- Evapotranspiration and plant growth dynamics
- Response (feedbacks) of the regional climate models
- \Rightarrow How to better regionalize the parameters of the soil infiltration model?
- \Rightarrow How to constrain its parameters during calibration?

3. Mesoscale hydrological model

Grid based HBV-UFZ

wh	ere	
\dot{x}_i		$\equiv \frac{\partial x_i}{\partial t} \forall i$
i,t		Indexes for cell and time respectively
N		Number of cells
T		Number time intervals
n		Number model parameters
m		Number transfer function parameters
q_k		Surface runoff component, $k = 1, \ldots, 4$
v_1	[1]	Land cover
v_2	[mm]	Soil texture class

State equations: cell (i), t:

$\dot{x}_1 = P - F - E_1$
$\dot{x}_2 = F - M$
$\dot{x}_3 = R + M - E_2$
$\dot{x}_4 = I - q_2 - q_3 - q_3$
$\dot{x}_5 = C - K - q_4$

Output: Runoff Q(t):

 $\hat{Q}(t) = \langle \hat{Q}_r(t) \rangle = g(\mathbf{x}, \mathbf{v}, \boldsymbol{\beta}) + \epsilon(t)$

Transfer functions:

 $\left\{ \begin{array}{c} \beta_{1} \\ \vdots \\ \beta_{n} \end{array} \right\}_{(:\,i)} = f \left[\left\{ \begin{array}{c} \gamma_{1} \\ \vdots \\ \gamma_{m} \end{array} \right\}, \left\{ \begin{array}{c} v_{1} \\ \vdots \\ v_{k} \end{array} \right\}, \left\{ \begin{array}{c} v_{1} \\ \vdots \\ v_{k} \end{array} \right\} \right] \quad n \times N \times T \gg m$

v_3	[1]	Fraction of impervious areas i
v_4	[1]	Fraction of clay content.
v_5	[1]	Fraction of sand content.
v_6	$[kgm^{-3}]$	Bulk density.
Θ	[1]	Modeled soil moisture.
\exists_s	[1]	Saturated soil moisture.
z_k	[m]	Depth of the horizon k .
eta		regionalized model parameters
γ		transfer function parameters (

Soil moisture parameter regionalization in a mesoscale hydrologic model

Luis Samaniego, Rohini Kumar, and Sabine Attinger

Helmholtz - Centre for Environmental Research - UFZ, Germany (luis.samaniego@ufz.de)

4. Soil moisture process

Assuming only vertical flows and Brook & Corey (1964) parametrization of the soil hydraulic conductivity.

> $\dot{x}_3 = F + M - E_2 - I$ $E_{2} = \begin{cases} \inf \{x_{3}, (V - E_{1})\} & x_{3} > \beta_{2} \\ \inf \{x_{3}, \frac{x_{3}}{\beta_{2} - \beta_{1}}(V - E_{1})\} & \beta_{1} < x_{3} \le \beta_{2} \end{cases}$ $\frac{I}{R+M} = \left(\frac{x_3}{\beta_3}\right)^{\beta_4} \approx \left(\frac{\Theta}{\Theta_{\circ}}\right)^{\frac{2}{\lambda}+3}$

5. Regionalization approaches R1: Based on land cover and soil classes: It discriminates land cover classes and soil texture types into subsets, each of then exhibiting unique parameters.

 $eta_3 = f(v_1, v_2, oldsymbol{\gamma})$ $\beta_4 = f(v_1, \boldsymbol{\gamma})$

R2: Based on pedotransfer functions: Takes into account the fraction of clay, sand and the bulk density. The latter, in turn, depends on the organic matter content which is land cover specific.

> $\Theta_s = f(v_1, v_4, v_5, v_6, \boldsymbol{\gamma})$ $\lambda = f(v_1, v_6, \boldsymbol{\gamma})$

6. Stochastic dependence using copulas

 $F(x_1, x_2) = P[X_1 \le x_1, X_2 \le x_2] = C(F_1(x_1), F_2(x_2))$

 $-I-q_1$ C

in floodplains

(to be calibrated).

otherwise

7. Results

8. Conclusions

- mance (NSE=0.90).
- on the modeled soil moisture.

• Regionalization (R2) produced a significant improvement in model perfor-

• R2 produced more plausible spatial patterns than the R1 approach. • Proxies such as API and LST (see copulas) are stochastically dependent

