

Introduction

Nearest neighbor techniques are commonly used in cluster analysis and statistics either to classify objects into a predefined number of categories or to assess the value of a predictand based on a given set of characteristics or predictors. These techniques are specially useful if the relationship between the variables is highly nonlinear. In most studies, however, the distance measure is adopted a priori and applied to the whole set of observations. In this study, on the contrary, a general procedure to find a metric that combines a local variance reducing technique and a linear embedding of the observation space into an appropriate Euclidean space is proposed[2].

	2. Basic Definitions and Notat	
System $\longrightarrow y = f(\mathbf{x}) + \varepsilon$		
Data set $\longrightarrow \mathcal{D} = \{(\mathbf{x}_i, y_i) \mid i = 1, \dots n\}$		
Transformation \longrightarrow u = $B[\mathbf{x}]$		
Lipschitz cond. $\longrightarrow y_i - y_j < Ld_B(i, j) \forall i, j$		
Question	the local continuity and is invariant changes of scale of the inputs?	
Notation		
y	The output of a system (a scalar or a vect	
$f(\cdot)$	A nonlinear implicit function.	
\mathbf{X}	<i>m</i> -dimensional vector of inputs.	
${\mathcal E}$	Error term with mean zero and undefined	
n	The sample size of the data set \mathcal{D} .	
B	Transformation (possibly nonlinear).	
\mathbf{u}	k-dimensional vector space $(k \leq m)$.	
	The Euclidean distance between $\mathbf{u_i} = B[\mathbf{x_i}]$	
L	A constant. Thus also also anti-ana	
p, p^*	Threshold proportions.	
$D_B(p)$	A limiting distance.	
$\mathcal{N} = . $ N	Cardinality of the set $ \{(i, j); d_B(i, j) < .\}$	
λ_i	Number of close neighbors. Kriging weights.	
,	Trimmed mean slope.	
x_1	Fraction of impervious cover.	
x_2	Mean annual precipitation.	
x_3		
x_4	Mean maximum temperature in January. Spatial variance of the precipitation.	
x_5	Depth of the precipitation forecast.	
x_6 b b	LANDSAT bands.	
o_1,\ldots,o_7		

H53F-0536: A Generalization of the Local Estimator Technique

Luis E. Samaniego¹, András Bárdossy²

¹UFZ-Centre for Environmental Research, Germany (luis.samaniego@ufz.de) ²University of Stuttgart, Germany (bardossy@iws.uni-stuttgart.de)

3. Method

The simplest type of transformation is linear, e.g. using a matrix:

$$\mathbf{u} = \mathbf{B}\mathbf{x}$$

B can be estimated by

 $\int_0^p G_B(p) dp \to \min$

where

$$\mathcal{G}_B(p) = \frac{1}{\mathcal{N}(D_B(p))} \sum_{d_B(i,j) < D_B(p)} (y_i - y_j)^2$$

 $G_B(p)$ is a "local variance" function that expresses the increase of variability of the output with respect to the increase of the distance of the nearest neighbors in a nonparametric form. A solution of the objective function $G_B(p)$ (i.e. the elements of the matrix **B**) can be found by Simulated Annealing[1]. The "best" dimension k of the space into which the variables x are embedded can be selected with the help of the Mallows' C_P statistic.

4.	Local Estin
Nearest neighbor	$y=y_{i_0}$
	$d_B(\mathbf{u},\mathbf{u_{i_0}})$
Mean of close neighbors	$y = \frac{1}{N}_{d_B(\mathbf{x})}$
Local linear regression	$y = a_0 + \sum_{i=1}^{N} x_{i}$
	$a_i \to \{(\mathbf{u_i})\}$
Local Kriging	$y = \frac{1}{N(p_s)}$

5. Study Area

- Area: 4000 km².

tion

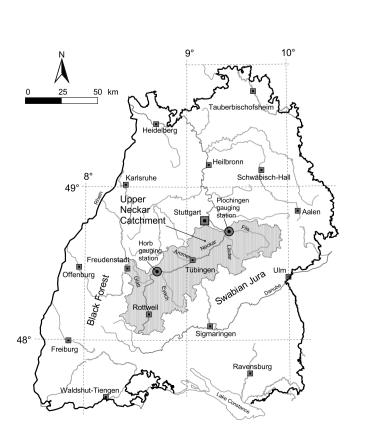
that it preserves with respect to

tor).

distribution.

and $\mathbf{u}_{\mathbf{j}} = B[\mathbf{x}_{\mathbf{j}}]$.

 $D_B(p)\}|.$



Location of the Upper Neckar Catchment

mators

$$d_B(\mathbf{u}, \mathbf{u}_i)$$
 $i = 1, \dots, n$

$$\sum_{(\mathbf{u},\mathbf{u_i}) < D(N)} y_i$$

$$\sum_{i=1}^{k} a_i u^{(i)}$$

$$\mathbf{a}_{\mathbf{i}}, y_i) ; d_B(\mathbf{u}, \mathbf{u}_{\mathbf{i}}) < D(p_s) \}$$

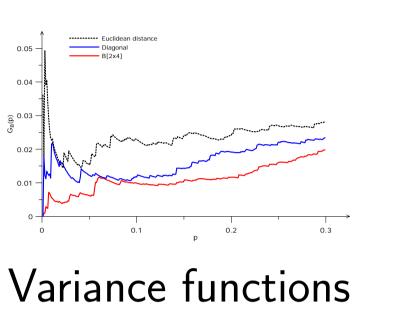
$$\overline{f_s} \sum_{d_B(\mathbf{u},\mathbf{u_i}) < D(p_s)} \lambda_i y_s$$

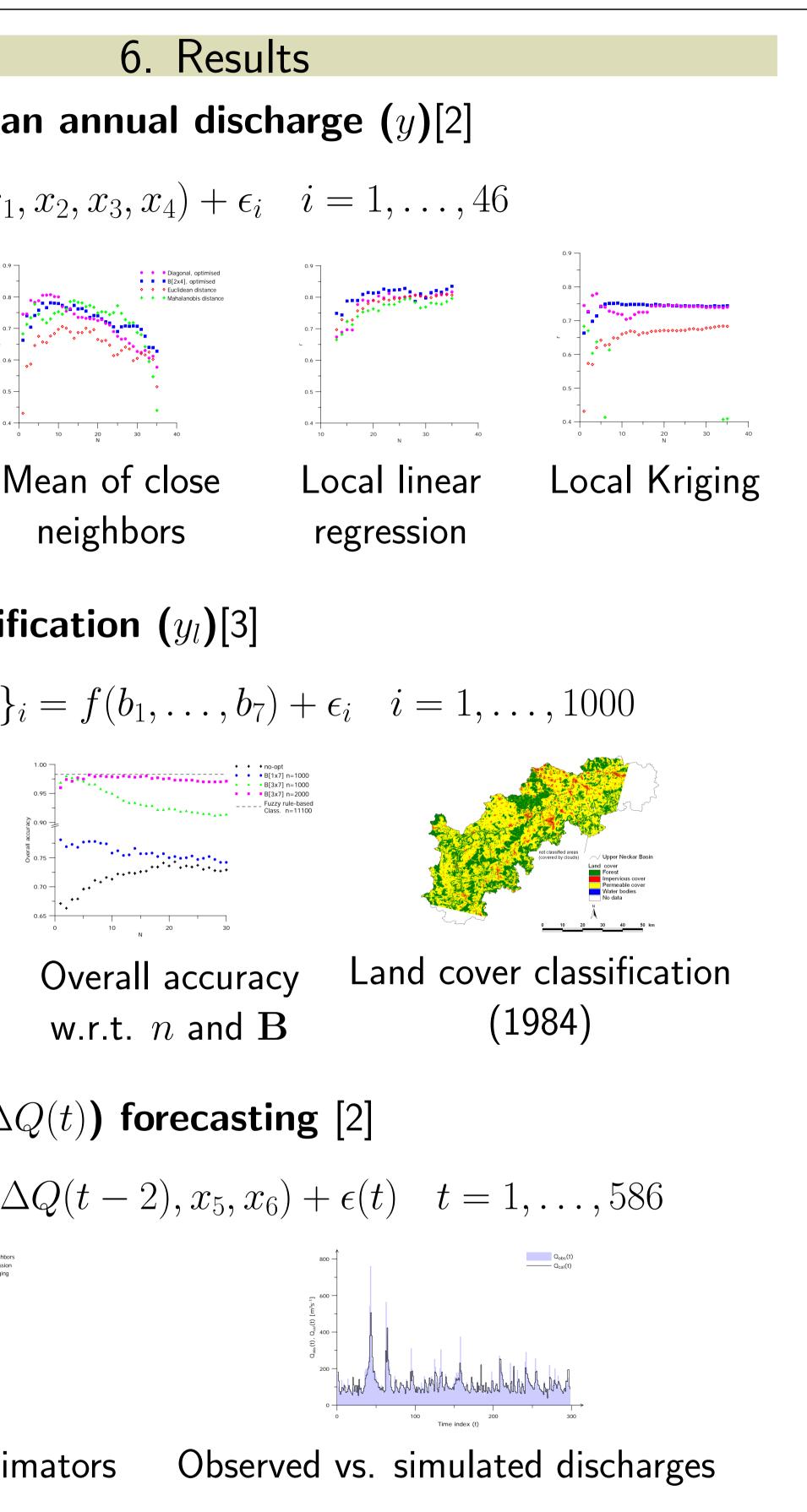
• Elevation: ranges from 240 m to 1014 m a.s.l. with a mean of 546 m.

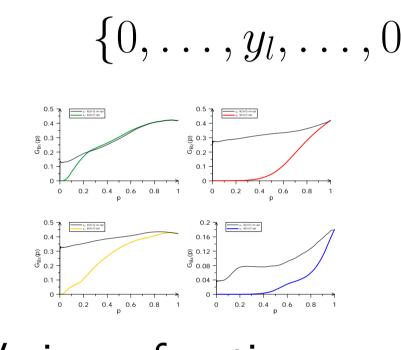
• Slopes: mild; 90% of its area has slopes varying from 0° to 15° . In some places in the Black Forest up to 50° .

• Climate: C_f (Köppen's notation), moist mid-latitude climates with mild winters with a mean annual precipitation of 900 mm.

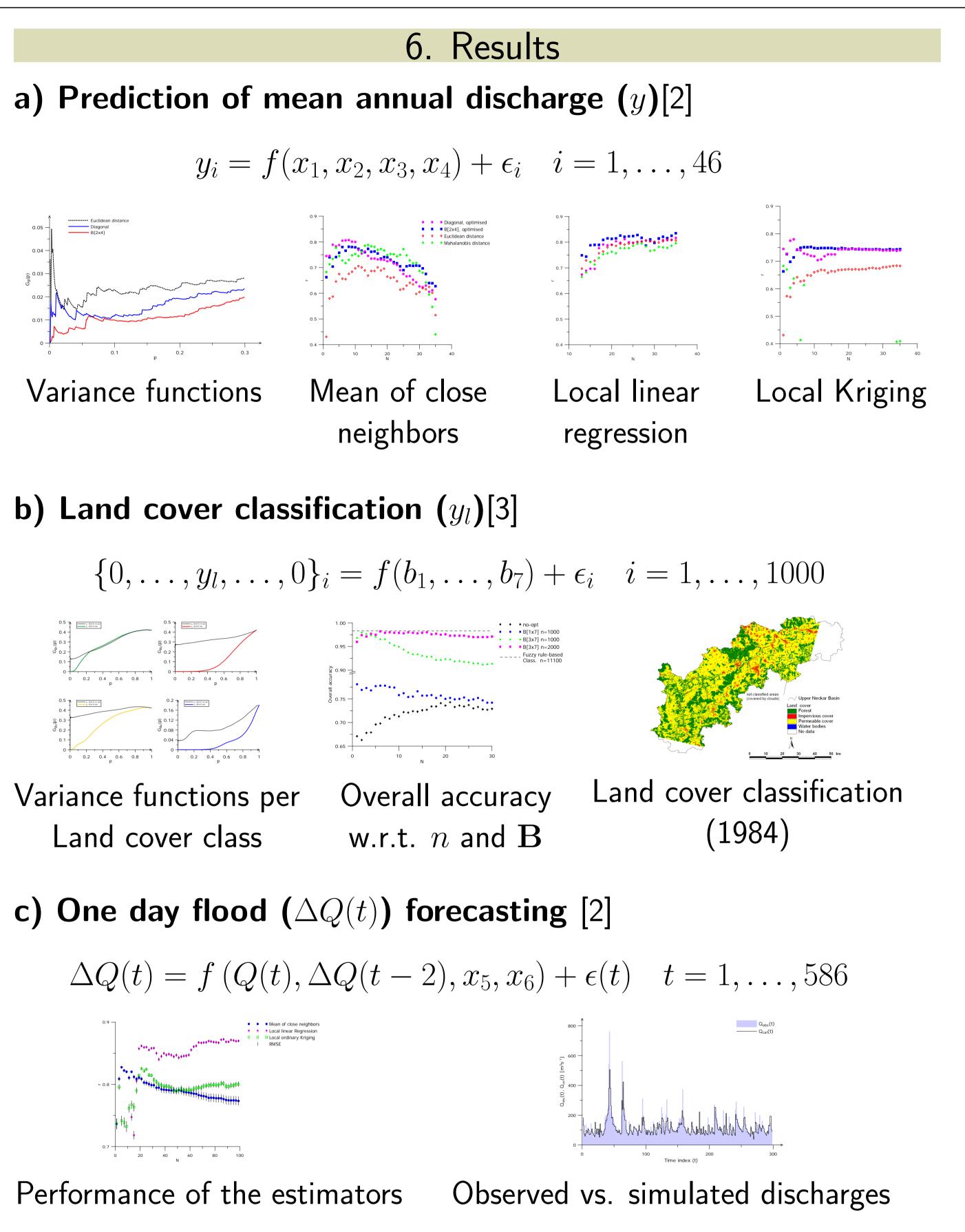
$$y_i = f(x_1, x_2, x_3)$$







Variance functions per Land cover class



Performance of the estimators

- research is still needed to confirm this hypothesis.

References

7. Conclusions

• The optimal embedding ensures the highest degree of continuity (i.e. the "local variance" function) and it is scale invariant.

• Results show that the proposed method leads to better results than classical function fitting or the usual nearest neighbor method.

• Nonlinear embeddings might further improve this method. Further

[1] E. H. L. Aarts and J. Korst, *Simulated Annealing and Boltzmann Machines: A Stochastic Approach* to Combinatorial Optimization and Neural Computing. Chichester: John Wiley and Sons, 1989. [2] A. Bárdossy, G. S. Pegram, and L. Samaniego, "Modeling data relationships with a local variance reducing technique: Applications in hydrology," Water Resour. Res., vol. 41, 2005.

[3] A. Bárdossy and L. Samaniego, "Fuzzy rule-based classification of remotely sensed imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 2, pp. 362–374, 2002.