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7. Conclusions

•The optimal embedding ensures the highest degree of continuity (i.e.
the “local variance” function) and it is scale invariant.

•Results show that the proposed method leads to better results than
classical function fitting or the usual nearest neighbor method.

•Nonlinear embeddings might further improve this method. Further
research is still needed to confirm this hypothesis.

6. Results
a) Prediction of mean annual discharge (y)[2]

yi = f (x1, x2, x3, x4) + εi i = 1, . . . , 46
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b) Land cover classification (yl)[3]

{0, . . . , yl, . . . , 0}i = f (b1, . . . , b7) + εi i = 1, . . . , 1000
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c) One day flood (∆Q(t)) forecasting [2]

∆Q(t) = f (Q(t), ∆Q(t− 2), x5, x6) + ε(t) t = 1, . . . , 586
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5. Study Area
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Location of the
Upper Neckar Catchment

•Area: 4000 km2.

•Elevation: ranges from 240 m to
1014 m a.s.l. with a mean of 546 m.

•Slopes: mild; 90% of its area has
slopes varying from 0◦ to 15◦. In some
places in the Black Forest up to 50◦.

•Climate: Cf (Köppen’s notation),
moist mid-latitude climates with mild
winters with a mean annual precipita-
tion of 900 mm.

4. Local Estimators
Nearest neighbor y = yi0

dB(u,ui0) ≤ dB(u,ui) i = 1, . . . , n

Mean of close neighbors y =
1

N

∑
dB(u,ui)<D(N)

yi

Local linear regression y = a0 +
k∑

i=1

aiu
(i)

ai → {(ui, yi) ; dB(u,ui) < D(ps)}

Local Kriging y =
1

N(ps)

∑
dB(u,ui)<D(ps)

λiyi

3. Method
The simplest type of transformation is linear, e.g. using a matrix:

u = Bx

B can be estimated by ∫ p∗

0
GB(p)dp → min

where

GB(p) =
1

N (DB(p))

∑
dB(i,j)<DB(p)

(yi − yj)
2

GB(p) is a “local variance” function that expresses the increase of
variability of the output with respect to the increase of the distance
of the nearest neighbors in a nonparametric form. A solution of the
objective function GB(p) (i.e. the elements of the matrix B) can
be found by Simulated Annealing[1]. The “best” dimension k of the
space into which the variables x are embedded can be selected with
the help of the Mallows’ CP statistic.

2. Basic Definitions and Notation
System −→ y = f (x) + ε

Data set −→D = {(xi, yi) i = 1, . . . n}
Transformation −→ u = B[x]

Lipschitz cond. −→ |yi − yj| < LdB(i, j) ∀ i, j

Question How to find the transformation B, so that it preserves
the local continuity and is invariant with respect to
changes of scale of the inputs?

Notation

y The output of a system (a scalar or a vector).
f (·) A nonlinear implicit function.
x m-dimensional vector of inputs.
ε Error term with mean zero and undefined distribution.
n The sample size of the data set D.
B Transformation (possibly nonlinear).
u k-dimensional vector space (k ≤ m).
dB(i, j) The Euclidean distance between ui = B[xi] and uj = B[xj].
L A constant.
p, p∗ Threshold proportions.
DB(p) A limiting distance.
N = |.| Cardinality of the set |{(i, j) ; dB(i, j) < DB(p)}|.
N Number of close neighbors.
λi Kriging weights.
x1 Trimmed mean slope.
x2 Fraction of impervious cover.
x3 Mean annual precipitation.
x4 Mean maximum temperature in January.
x5 Spatial variance of the precipitation.
x6 Depth of the precipitation forecast.
b1, . . . , b7 LANDSAT bands.

1. Introduction
Nearest neighbor techniques are commonly used in cluster analysis
and statistics either to classify objects into a predefined number of
categories or to assess the value of a predictand based on a given
set of characteristics or predictors. These techniques are specially
useful if the relationship between the variables is highly nonlinear. In
most studies, however, the distance measure is adopted a priori and
applied to the whole set of observations. In this study, on the contrary,
a general procedure to find a metric that combines a local variance
reducing technique and a linear embedding of the observation space
into an appropriate Euclidean space is proposed[2].
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